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Abstract
Cholesterol and its metabolites play a crucial role in cancer development and suppression of 
immune responses. In recent years, a large number of experimental and clinical studies have shown 
that manipulation of cholesterol metabolism modulates functions in tumor biological processes, 
particularly oncogenic signaling pathways, ferroptosis, and the tumor microenvironment. We 
elucidate in detail the interactive effects produced by cholesterol metabolism and the tumor 
microenvironment. We also discuss therapeutic strategies aimed at interfering with cholesterol 
metabolism, and some new cholesterol metabolizing molecules, SREBP, SQLE and HMGCR have 
recently emerged as promising drug targets for cancer therapy. Here, we systematically review 
the role of cholesterol and its metabolites, as well as recent advances in cancer therapy targeting 
cholesterol metabolism.
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Introduction
Cholesterol, a derivative of cyclopentane poly-hydro-phenanthrene with the chemical formula 

C27H46O, is the major steroidal compound in mammals and plays an important role in basic cellular 
life activities [1]. As an essential lipid component of mammalian cell membranes, cholesterol 
maintains the integrity and fluidity of cell membranes and forms cell membrane microstructures 
[2]. It can also act as an important regulator of cellular signaling, both through direct effects on the 
cell membrane and through activation of oxygenated metabolites from specific receptors (steroids, 
hydroxycholesterol, bile acids) [3]. Homeostasis of cholesterol metabolism in the cell is maintained 
by a complex network regulating cholesterol biosynthesis, uptake, efflux, conversion, esterification 
and cholesterol transport [4]. More importantly, cholesterol and its derived metabolites play an 
important role in promoting tumorigenesis as well as suppressing the tumor immune response [5]. 
Excess cholesterol activates the Sterol-Regulatory Element Binding Proteins (SREBPs) [6], Fatty 
Acid Synthase (FASN) [7,8], overexpression 3-Hydroxy-3-Methyl Glutaryl Coenzyme A Reductase 
(HMGCR) [8], which occurs in a variety of cancers and their pre-cancerous lesions, including 
hepatocellular carcinoma, gastric carcinoma, prostate carcinoma, non-small-cell lung carcinoma, 
and melanoma, and has been associated with cancer recurrence and death [9-11]. Cholesterol also 
acts as a signaling molecule that regulates morphogenetic elements, such as Hedgehog signaling 
[12], as well as being able to mediate a variety of signaling pathways such as Wnt/β-catenin, EGFR-
STAT3 and others [13,14]. In addition, cholesterol biosynthesis affects Cancer Stem Cells (CSCs) 
responsible for tumor progression, recurrence and drug resistance, which could be a potential target 
for cancer treatment [15].

In this paper, we have elaborated on the mechanism of cholesterol synthesis, the expression and 
regulation of key enzyme activities and the important role that cholesterol metabolism plays in tumor 
development, as well as exploring the feasibility of cholesterol metabolism for the development of 
future clinical anti-tumor therapy.

Cholesterol Intake
The biological functions of cholesterol are diverse, ranging from cell membrane integrity, 
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cell membrane signaling, and immunity to the synthesis of steroids 
and sex hormones, vitamin D, bile acids, and oxysterols [16-19]. 
Cholesterol is derived from two sources, exogenous, where the vast 
majority of cholesterol is derived from dietary cholesterol [20,21], 
and endogenous, where it is synthesized by the body itself [22]. An 
increase in exogenous cholesterol can feedback inhibit endogenous 
cholesterol synthesis [22,23]. Two main lipoproteins are involved in 
cholesterol transportation: namely, Low-Density Lipoprotein (LDL) 
and High-Density Lipoprotein (HDL) [24]. The former transports 
cholesterol from the liver to tissue cells throughout the body, whereas 
the latter transports cholesterol from tissue cells to the liver in a 
dynamic equilibrium [25]. In contrast, disturbances in cholesterol 
homeostasis are considered to be one of the manifestations of cancer, 
and the regulation of cholesterol homeostasis can interfere with the 
onset and progression of cancer [26].

Exogenous acquisition
Cholesterol is mainly found in esterified form in meat, fish, 

eggs and dairy products [24]. Among them, Niemann-Pick C1-
Like 1 (NPC1L1) is essential for intestinal cholesterol absorption. 
In the intestinal lumen, cholesterol binds to bile salt micelles and is 
transported through the intestinal epithelium at the Brush Border 
Membrane (BBM) via NPC1L1 in response to lattice protein-mediated 
endocytosis [14,27,28]. Binding of cholesterol to the amino-terminal 
structural domain of NPC1L1 induces dissociation of the carboxyl 
terminus from the Plasma Membrane (PM), exposing the endocytosis 
motif Y1306VNxxF (where x represents any amino acid) for NUMB 
recognition [29]. NUMB recruits AP2/Clathrin to generate Clathrin-
encapsulated vesicles and initiates endocytosis of NPC1L1, while 
NPC1L1 interacts with Flotillin-1/2 proteins to form cholesterol-
rich membrane microstructural domains, and in this vesicular 
transport mode NPC1L1 transports large amounts of cholesterol to 
the Endocytosis Recycling Chamber (ERC) [30]. NPC1L1 can bind 
different amounts of cholesterol molecules in response to changes 
in cholesterol levels via its Sterol Sensing Domains (SSDs) [31], 
and triggers Clathrin-mediated auto endocytosis and its action on 
cholesterol molecules in the vicinity of the endoplasmic reticulum. 
Internalized cholesterol in the small intestine is then transported 
to the endoplasmic reticulum where it is modified by Acyl-CoA 
Cholesterol Acyltransferase 2 (ACAT2) to cholesteryl esters, which 
are secreted into the interstitial space of the cells in the form of 
Chytridiales Microsomes (CMs) or High-Density Lipoproteins 
(HDLs), migrate to the lamina propria, enter the luminal ducts of the 
lymphatic system, and pass through the portal vein to the liver or 
through the thoracic duct into the circulation [22,32,33]. In addition, 
absorbed cholesterol can be exported from the cell via adenosine 
triphosphate-binding cassette transporter G5/G8 (ABCG5/ABCG8) 
heterodimer and re-secreted back into the intestinal lumen [34].

Current studies have shown that NPC1L1 influences colorectal 
cancer development and prognosis and can be used as an independent 
prognostic marker for colorectal cancer cancers [35,36], furthermore, 
cells entering the Drug-Tolerant Persister (DTP) state in Multidrug-
Resistant (MDR) cancer cells counteracted chemotherapy-triggered 
oxidative stress by promoting NPC1L1-regulated vitamin E uptake, 
and the use of the NPC1L1 inhibitor ezetimibe treatment can further 
enhance the effect of combination therapy by inducing methuosis 
[37].

Endogenous synthesis
The liver is the main site of cholesterol biosynthesis, delivering 

endogenously synthesized and exogenously obtained cholesterol 
to the blood as Very Low-Density Lipoprotein (VLDL) [38,39]. 
Cholesterol synthesis is a multistep reaction process with extremely 
high energy expenditure, requiring 18 acetyl coenzyme a, 36 ATP, 
16 NADPH and 11 oxygen molecules for the synthesis of one 
cholesterol molecule [1,39]. This biosynthetic pathway converts 
acetyl coenzyme a to cholesterol through nearly 30 enzymatic 
reactions, including the mevalonate pathway, squalene biosynthesis 
and subsequent conversion [40]. Two acetyl coenzyme molecules 
in the cytoplasm condense to form Acetoacetyl coenzyme a, which 
reacts with a third acetyl coenzyme a to produce 3-Hydroxy-3-
Methylglutaryl Coenzyme a (HMG-CoA), which is reduced to 
mevalonate by the 3-Hydroxy-3-Methylglutaryl-Coenzyme A 
Reductase (HMGCR), and a series of enzymatic reactions converts 
the mevalonate to Farnesyl Pyrophosphate (FPP), the precursor of 
stanols and all non-sterol isoprenoids [41]. The condensation of two 
FPP molecules to squalene refers to the production of sterols, and 
FPP also produces Geranylgeranyl pyrophosphate (GGPP), both FPP 
and GGPP can pentenoic acid and activate a number of oncogenic 
proteins, such as small GTP-binding proteins [42,43]. Cells largely 
fulfill their cholesterol requirement through de novo synthesis of 
acetyl coenzyme a, which is particularly important for cancer cells to 
maintain dysregulated cell proliferation [44] (Figure 1).

HMGCR, the predominant rate-limiting enzyme in cholesterol 
biosynthesis, is highly regulated at the transcriptional, translational 
and post-translational levels [45]. Mammalian HMGCR is an 
Endoplasmic Reticulum (ER)-localized glycoprotein comprising 
a hydrophobic N-terminal structural domain that spans the cell 
membrane 8-fold and a larger soluble N-terminal structural domain 
that projects into the cytoplasm [46-48]. HMGCR expression is 
upregulated in ovarian, hepatocellular, and breast cancers [49-
51]. Overexpression of HMGCR promotes cancer cell growth and 
migration, while HMGCR knockdown inhibits tumorigenesis [52]. 
Statins, as competitive HMG-CoA Reductase (HMGCR) inhibitors, 
not only lower cholesterol and improve cardiovascular risk, but also 
have anticancer properties [53], and statins have been targeted for 
the treatment of a wide range of drug-resistant solid and hematologic 
cancers [54,55]. Early-stage T-cell Acute Lymphoblastic Leukemia 
(ETP ALLs) shows increased biosynthesis of phospholipids and 
sphingolipids and is particularly sensitive to inhibition of the rate-
limiting enzyme HMG-CoA reductase in the mevalonate pathway, 
mechanistically inhibiting oncogenic AKT1 signaling by the 
restriction of cholesterol synthesis and inhibiting the expression of 
MYC through the loss of leukemia stem cell-specific distal regulation 
of MYC enhancer chromatin [56]. In addition to being a substrate 
for HMGCR, HMG-CoA can be catalyzed by HMG-CoA-Lyase 
(HMGCL) to produce acetoacetate, a ketone body necessary for 
activation of MEK in certain tumor types [57]. HMG-CoA reductase 
also has a transmembrane sterol-sensing structural domain that 
plays a role in activating the degradation of the enzyme, which is 
also regulated at the transcriptional level by the regulation by Sterol 
Regulatory Element Binding Protein #2 (SREBP-2) [58].

Homeostatic imbalance
Disturbed cholesterol homeostasis plays a key role in the 

development of several diseases, such as Cardiovascular Disease 
(CVD), neurodegenerative diseases and cancer [59]. Especially in 
cancer, the therapeutic idea of targeting cholesterol metabolism for 
cancer treatment has been widely tested in the clinic in recent years 
[60]. Cholesterol deficiency was found to be present in T cells within 
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tumors, whereas immunosuppressive myeloid and tumor cells showed 
significant upregulation of cholesterol, and low cholesterol levels 
inhibited T cell proliferation while inducing autophagy-mediated 
apoptosis, particularly in cytotoxic T lymphocytes [61]. In the tumor 
microenvironment, oxysterols mediate reciprocal alterations in 
the LXR and SREBP2 pathways, contributing to T-cell cholesterol 
deficiency and subsequently leading to aberrant metabolism that 
drives T-cell exhaustion and dysfunction [62,63]. LXRβ deficiency 
in Chimeric Antigen Receptor T (CAR-T) cells improves antitumor 
function against solid tumors [64].

Adrenal and gonadal steroidogenesis begins with the translocation 
of cholesterol to mitochondria, which is mediated by the Recombinant 
Steroidogenic Acute Regulatory Protein 1 (STARD1), which contains 
a mitochondrial import sequence and a cholesterol-binding START 
structural domain [65], and cholesterol translocation to mitochondria 
via STARD1 is the alternative pathway of Bile Acid (BA) production 
in the rate-limiting step [66]. High expression of STARD1 promotes 
primary BA synthesis through the mitochondrial pathway, and its 
products stimulate hepatocyte self-renewal, stemness, inflammation, 
and Hepatocellular Carcinoma (HCC) development [67-69].

Proprotein Convertase Subtilisin/Kexin type-9 (PCSK9), the 
highest up-regulated of the cholesterol-related genes, acts as a 
regulator of cholesterol homeostasis, and plays a role in increasing 
circulating Low-Density Lipoprotein (LDL) - cholesterol (LDLc) 
levels by enhancing the sorting and escorting of LDL Receptor 
(LDLR) to lysosomes on the cell surface. Cholesterol (LDLc) levels, 
which involves the binding of the catalytic structural domain of 
PCSK9 to the EGF-A structural domain of the LDLR, and also 
requires the presence of the C-terminal Cys/His-rich structural 
domain, its binding to secreted cytosolic cyclase-associated protein 
1, and potentially another membrane-bound "protein X "PCSK9 
deficiency inhibits the growth of APC/KRAS mutant CRC cells 
in vitro and in vivo via the GGPP-KRAS/MEK/ERK axis, whereas 
PCSK9 overexpression induces carcinogenesis [70-72]. Knockdown 
of the mouse PCSK9 gene in concomitant cells was significantly 
attenuated in a cytotoxic T-cell-dependent manner, enhancing the 

efficacy of immunotherapy targeting the checkpoint protein PD1, 
and inhibition of PCSK9 by gene deletion or use of a PCSK9 antibody 
increased the expression of the Major Histocompatibility Complex 
I (MHC I) proteins on the surface of the tumor cells, facilitating a 
powerful intra-tumor infiltration [73].

Regulatory Components and Key Enzymes 
in the Regulation of Cholesterol Metabolism 
and the Role in Cancer
SREBPs

SPEBPs are important modules in the regulation of cholesterol 
metabolism, which not only play an important role in metabolic 
diseases, but also have been found to play a key role in the development 
of tumors [74,75]. SREBPs are involved in the formation of the 
energy supply, lipid supply, immune environment, and inflammatory 
milieu of the tumor cells and act as a protective shield to support 
the malignant proliferation of tumor cells [76]. SREBPs belong to 
the family of membrane-bound proteins and are basic helix-loop-
helix leucine zipper transcription factors. The isoforms are SREBP-
1a, SREBP-1c, and SREBP-2. Of these, SREBP-1a and SREBP-1c are 
encoded by the same gene, while SREBP-2 is encoded by a separate 
gene [77,78]. SREBP-1 is mainly regulated by caloric restriction 
[79], whereas SREBP-2 is stimulated by thyroid hormones and itself 
[80]. SREBP-2 is also preferentially involved in gene transcription 
in cholesterol biosynthesis [81]. Under physiological conditions, 
activation of SREBPs is tightly regulated by sterol-triggered negative 
feedback loops in the ER [82]. Classical activation is mainly mediated 
by Insulin-Inducible Genes (INSIG) and SREBP Cleavage-Activating 
Protein (SCAP) [83-85]. Extracellular cholesterol is carried by LDL 
and binds to the LDLR on the cell surface. Upon binding, cholesterol 
is transported into the cell and broken down by lysosomes into 
intracellular cholesterol [86,87]. Intracellular cholesterol binds to 
the sterol transporter ATP-Binding Cassette subfamily A member 1 
(ABCA1)/ATP-Binding Cassette subfamily G member 1 (ABCG1) 
and is translocated to the extracellular space, accomplishing 
cholesterol uptake and efflux [88,89]. miR-33 embedded introns are 
co-transcribed with SREBPs, which can inhibit the expression of 

Figure 1: De novo biosynthesis, conversion, and storage of cholesterol in organisms.
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ABCA1 and ABCG1, thereby inhibit cholesterol reversal [90]. Excess 
cholesterol in cells binds to SREBP-mediated fatty acids and esterifies 
them to cholesteryl esters to avoid negative cholesterol regulation, 
and these measures provide a large amount of energy and nutrients 
and protection for tumor cell proliferation [91-93].

SREBPs are also involved in the activation of M1-type macrophages 
[94]. M1-type macrophages use glycolysis as the main mode of energy 
supply. Disruption of the tricarboxylic acid cycle in M1 macrophages 
leads to the accumulation of citric and succinic acids, which activate 
HIF1α, which in turn leads to the release of pro-inflammatory 
factors [95,96]. LPS induces, through a TLR4 signaling dependent 
and independent pathway NF-κB activation, which induces the 
expression of SREBPs and promotes lipid synthesis and accumulation 
[97]. Acetyl-CoA synthetase (ACLY) acts as a downstream gene of 
SREBPs and participates in lipid synthesis, driving the release of 
ROS, NO, PGE2 [98,99]. SREBPs also activate Nlrp1a and Nlrp1c, 
leading to the release of pro-inflammatory factors [100,101]. The role 
of SREBPs is not limited to macrophages, but is also broadly involved 
in T-cell function as well as in the specific functions of innate and 
adaptive immunity [102,103]. SREBPs are required in the metabolic 
reprogramming of CD8+ T cells in response to mitogenic signals, 
and their absence in CD8+ T cells renders them ineffective against 
matricellular cells, leading to reduced proliferative capacity in vitro 
and attenuated clonal expansion during viral infection [104]. In 
dendritic cells, cholesterol accumulation accelerates the development 
of autoimmunity at the transcriptional level through Nod-Like 
Receptor 3 (NLRP3) isoforms [105,106].

FDFT1
FDFT1 is a key enzyme molecule in the endogenous cholesterol 

synthesis pathway, which generates squalene through the condensation 
of two FPPs [107], an enzyme consisting of 416 amino acids with a 
molecular weight of 47-kDa, and is found almost exclusively in the 
endoplasmic reticulum [108]. Abnormal expression of FDFT1 occurs 
in a wide variety of cancers, which can be serve as a new candidate 
biomarker and a novel target for cancer therapy [109]. In addition to 
its role as a structural element in cholesterol biosynthesis, the product 
of the FDFT1 reaction, PSDP, has an additional function as a bioactive 
lipid that directly inhibits phospholipase D and leukocyte activity, 
thereby down-regulating intracellular signaling and attenuating the 
magnitude of the acute inflammatory response, thereby decreasing 
the risk of damage to host tissues, an activity that exhibits PSDP's role 
in the inflammatory response in neutrophils as a mediator property 
[110].

Most studies have reported that upregulation of FDFT1 is 
required for tumor progression because cholesterol is essential for 
cell proliferation and lipid rafts are required for signaling, invasion, 
and migration of cancer cells. FDFT1 is highly expressed in sphere-
forming breast cancer and neuroblastoma stem cells, which exhibit 
a very high capacity for auto-renewal and differentiation, as well 
as resistance to cancer therapy [111,112]. And in colorectal cancer 
FDFT1 exerts tumor suppressor function by negatively regulating 
AKT/mTOR/HIF1α signaling [113]. FDFT1 not only serves as an 
important gene for predicting the prognosis of patients with colorectal 
cancer, but currently FDFT1 has been identified as a ferroptosis 
gene [114,115]. The expression of FDFT1 is significantly increased 
during cell proliferation, which suggests that FDFT1 is involved in 
proliferative signaling in cancer cells. Specifically, FDFT1 regulates 
the cell cycle, in which inhibition of FDFT1 significantly hinders 

the period of synthesis in cell cycle. In addition, FDFT1 activates 
the NF-κB pathway, leading to increased levels of anti-apoptotic 
proteins such as Bcl-xL, Bcl-2, and Bax, and to decreased levels of 
pro-apoptotic proteins such as caspase-3, thus blocking the apoptotic 
signaling pathway [116]. In Squalene Epoxidase (SQLE)-deficient 
cancer cells, high expression of FDFT1 increased intracellular 
squalene levels, thereby protecting the cell membrane from lipid 
peroxidation by ROS and further preventing cells from entering the 
iron death pathway [117].

EBP
EBP is an endoplasmic reticulum membrane protein that 

converts yeast sterols to dehydro-plant sterols or yeast sterols to plat 
sterols. The products of these two reactions are involved in cholesterol 
biosynthesis, autophagy, and oligodendrocyte formation through 
one of two parallel pathways, termed the Bloch and Kandutsch/
Russell pathways, respectively [118]. Inhibition of EBP leads to the 
accumulation of its substrate’s enzyme sterols and enzyme enols, 
which promotes autophagy in tumor cells [119,120]. Notably, EBP 
binds a large number of structurally diverse pharmacologically 
active compounds, including antidepressants, antipsychotics, opioid 
analgesics, sterol biosynthesis inhibitors, and antitumor reagents 
[121].

The Hedgehog (Hh) pathway plays a central role in vertebrate 
embryonic development and carcinogenesis, and G-protein-coupled 
receptor-like protein Smoothing (SMO) is one of the major members 
of the Hh pathway. Covalent modification of cholesterol on the 95th 
asparagine (D95) of human SMO, which is regulated by Hh and 
PTCH1, is essential for SMO activation. EBP acts as an SMO-interacting 
protein, and overexpression of EBP inhibits SMO cholesterolylation 
and Hh pathway activity, whereas genetic disruption of EBP enhances 
SMO cholestrerolization and downstream signaling. EBP-mediated 
SMO inhibition of cholesterolylation is independent of its isomerase 
activity but dependent on the C-terminus of EBP required for SMO 
binding [122]. In contrast, in colorectal cancer, inhibition of EBP 
leads to cancer cell death through depletion of downstream sterols 
[123]. EBP inhibitors have been shown to have a favorable inhibitory 
effect on the proliferation of the human prostate cancer PC-3 cell 
line [124]. Accumulation of EBP at the mRNA and protein levels is 
observed in Mesenchymal Lymphoma Kinase (ALK+) tumors [125].

SQLE
Squalene Epoxidase (SQLE) controls cholesterol biosynthesis 

by converting squalene to 2,3-diene oxide [126]. In human cells, the 
gene encoding SQLE is located in the chromosome 8q24.1 region 
[127]. SQLE is a direct target of SREBP2, and the SQLE protein also 
contains a cholesterol-sensing domain that regulates the proteasomal 
degradation of SQLE, so that, like HMGCR, SQLE activity is precisely 
regulated by intracellular cholesterol levels in the form of feedbacks, 
which makes it the second rate-limiting step in cholesterol synthesis 
[128]. Its loss leads to the accumulation of the upstream metabolite 
squalene. Although squalene is usually undetectable, squalene alters 
cellular lipid distribution, protects cancer cells from ferroptosis 
and provides a growth advantage for tumors under conditions of 
oxidative stress and in tumor xenografts [117]. SQLE is considered an 
oncogene that promotes oncogenic signaling, and indeed, frequent 
SQLE amplification and differential expression have been reported in 
cancer [129,130]. Given that the correlation between gene transcripts 
and protein abundance in tumors is likely to be low, and that small 
molecule SQLE inhibitors target proteins rather than mRNAs, it is 
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important to study the expression of SQLE proteins in cancers and 
assess their significance in patient prognosis [131].

SQLE promotes CRC cell proliferation by inducing cell cycle 
progression and inhibiting apoptosis, whereas inhibition of SQLE 
reduces the levels of Calcitriol (the active form of vitamin D3) 
and CYP24A1, followed by an increase in the intracellular Ca2+ 
concentration, followed by an inhibition of MAPK signaling, leading 
to the suppression of CRC cell growth [132]. The concomitant use of 
the SQLE inhibitor terbinafine can inhibit CRC growth by synergizing 
with oxaliplatin and 5-fluorouracil [133]. In prostate cancer PTEN/p53 
defects upregulate SQLE through activation of SREBP2 transcription 
and also enhance the protein stability of SQLE by inhibiting the PI3K/
Akt/GSK3β-mediated proteasomal pathway, thus the synergistic 
relationship that exists between SQLE and PTEN/p53 deficiencies in 
order to increase cholesterol biosynthesis for tumor cell growth and 
survival [134]. SQLE expression is specifically elevated in HCC and is 
strongly associated with poor clinical outcomes. SQLE significantly 
promotes HCC growth, epithelial-mesenchymal transition, and 
metastasis both in vitro and in vivo, and the effect of SQLE on HCC 
is associated with STRAP-dependent activation of TGF-β/SMAD 
signaling [135]. Activation of SQLE by nuclear receptor subfamily 
4 group A member 2 (NR4A2) dysregulates cholesterol homeostasis 
in microglia, oxidative stress promotes tumor growth via NR4A2-
SQLE activity in microglia, and targeting SQLE enhances therapeutic 
effects of immune checkpoint blockade in vivo [136]. In addition, 
SQLE increases the NADP+/NADPH ratio, which triggers DNA 
Methyltransferase 3A (DNMT3A) expression, DNMT3A-mediated 
epigenetic silencing of Phosphatase Tensin Homologs (PTEN), and 
activation of oncogenic targets of the rapamycin pathway [129].

DHCR24
DHCR24 is the final enzyme in the cholesterol biosynthesis 

pathway and is involved in the formation of lipid rafts and catalyzes 
the reduction of the Δ24 double bond in congeners to produce 
cholesterol [137,138]. DHCR24 is involved in a variety of cellular 
functions such as oxidative stress, cellular differentiation, anti-
apoptotic function and anti-inflammatory activity [139].

DHCR24 expression is higher in breast cancer than in normal 
breast, especially in luminal and HER2-positive breast cancer tissues. 

DHCR24 overexpression enhances breast cancer stem-like cell 
populations and the number of acetaldehyde dehydrogenase-positive 
cells, and DHCR24 promotes the growth of cancer stem-like cells by 
augmenting the Hedgehog signaling pathway [140]. DHCR24 is a 
direct target of the stem cell regulator SOX9, and in a Diffuse Large 
B-Cell Lymphoma (DLBCL) cell line xenograft model, knockdown of 
SOX9 resulted in reduced levels of DHCR24, decreased cholesterol 
content, and reduced tumor load, meaning that SOX9 can drive 
lymphomas through the DHCR24 and cholesterol biosynthesis 
pathways, and the SOX9-DHCR24-cholesterol biosynthesis axis 
could be a new therapeutic target for DLBCLs [141]. Since Serine/
arginine-Rich Splicing Factor 3 (SRSF3) regulation may be beneficial 
for the treatment of Colorectal Cancer (CRC), silencing SRSF3 
significantly inhibited the proliferation and migration of CRC cells 
through inhibition of its target gene, DHCR24, and the novel SRSF3 
inhibitor, SFI003, exhibited potent antitumor efficacy in vitro and in 
vivo, driving apoptosis in CRC cells through the SRSF3/DHCR24/
ROS axis [142]. Persistent Hepatitis C Virus (HCV) infection induces 
hepatocyte tumorigenicity, and HCV-induced high expression 
of DHCR24 exhibits resistance to oxidative stress and apoptosis 
while leading to reduced acetylation of p53 at lysine residues 373 
and 382 in the nucleus, suggesting that DHCR24 is elevated in 
response to HCV infection and inhibits p53 stress by stimulating the 
MDM2 (cytoplasmic p53-specific E3 ubiquitin ligase)-p53 complex 
accumulation in the cytoplasm and inhibiting the p53 stress response 
by suppressing p53 acetylation in the nucleus [143]. Thus, DHCR24 
could be an important target for HCV-associated HCC therapy.

Interaction between Cholesterol Metabolism 
and Tumor Microenvironment

Cancer development and progression is consistent with changes 
in the surrounding mesenchyme. Cancer cells can shape their 
microenvironment by secreting various cytokines, chemokines, and 
other factors, which leads to reprogramming of the surrounding 
cells, enabling them to play a decisive role in tumor survival and 
progression. Immune cells are an important component of the tumor 
mesenchyme and play a crucial role in this process [144,145].

In recent years, a growing body of evidence has emphasized the 
complex interplay between energy metabolism and immune cell 

Figure 2: Targeting regulatory elements and key enzymes of cholesterol metabolism for cancer therapy.
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responses [146]. Indeed, the emerging field of research in immune 
metabolism aims to elucidate the bidirectional causal relationship 
between metabolic reprogramming and immune dysfunction 
in various pathological conditions such as metabolic syndrome, 
autoimmune diseases and cancer. From this perspective, alterations 
in energy metabolism toward the tumor microenvironment have 
recently been implicated as a fuel for tumor cell proliferation and as 
a coordinator of cancer-associated inflammation and immune escape 
[147].

Tumors contain a variety of tumor-infiltrating immune cells. 
Cholesterol-rich and cholesterol-containing tumor tissues in tumor-
infiltrating CD8+ T cells positively correlate with up-regulated T-cell 
expression of PD-1, 2B4, TIM-3, and LAG-3, and cholesterol induces 
the expression of immune checkpoints by increasing ER stress in 
CD8+ T cells, while the endoplasmic reticulum stress sensor, XBP1, 
is activated and regulates the transcription of PD-1 and 2B4, whereas 
inhibition of XBP1 or lowering cholesterol in CD8+ T cells effectively 
restored antitumor activity [5]. Macrophages have intrinsic tumor 
suppressor activity, but Tumor-Associated Macrophages (TAMs) 
adopt an alternative phenotype in the tumor microenvironment 
characterized by tumor-promoting immunosuppressive and trophic 
functions, where cancer cells promote macrophage membrane 
cholesterol efflux and depletion of lipid rafts, and increased 
cholesterol efflux facilitates IL-4-mediated reprogramming, 
including inhibition of IFN-γ-induced gene expression, and gene 
deletion of ABC transporter proteins mediating cholesterol efflux, 
restoring tumor-promoting functions of TAMs and slowing tumor 
progression [148]. The unfavorable microenvironment in tumor 
tissues disrupts endoplasmic reticulum homeostasis and induces 
the Unfolded Protein Response (UPR), Chronic UPR in cancer 
cells and tumor-infiltrating leukocytes may contribute to evasion of 
immune surveillance, Whereas the UPR component, X-Box-Binding 
Protein 1 (XBP1), facilitates cholesterol synthesis and secretion, 
which activates Myeloid-Derived Suppressor Cells (MDSCs) and 
induces immune suppression, Cholesterol is delivered in the form of 
delivered as extracellular vesicles and internalized by MDSCs through 
macrophage phagocytosis, and genetic or pharmacological depletion 
of XBP1 significantly reduces MDSC abundance and triggers a potent 
antitumor response when lowering tumor cholesterol levels [149]. 
Cholesterol deficiency in tumors leads to T-cell exhaustion through 
inhibition of mTORC1 signaling, and increasing cholesterol levels in 
Chimeric Antigen Receptor (CAR)-T cells by blocking LXR improves 
antitumor function [64].

Cancer-derived cholesterol metabolites, especially oxysterols, 
have different effects on the function of different tumor-infiltrating 
immune cells. For neutrophils,22HC binds CXCR2 and recruits Gr-
1-high neutrophils to cancer cells. 24HC attracts Ly6G- and CD11b-
positive neutrophils. 27HC increases neutrophils and γδ T-cells but 
decreases CD8 T-cells, which promotes breast cancer metastasis. For 
macrophages, 25HC attracts macrophages by directing cytoskeletal 
reorganization. Thus, this may contribute to cancer metastasis and 
may also promote cancer metastasis by upregulating the expression 
of Matrix Metallopeptidases (MMPs). For dendritic cells, potential 
oxysterols that activate LXRα inhibit CCR7 expression and thus DC 
function. For CD8 T cells, some oxysterols may activate LXR signaling 
and inhibit effector functions. For MDSCs, as yet unidentified factors 
recruit lox-1-positive MDSCs to exert pro-tumorigenic functions 
[41].

Targeting Cholesterol to Treat Diseases
LXR

LXR agonist, RGX-104, potently inhibits the growth of a variety 
of mouse and human tumors. Depletion of MDSCs by up-regulation 
of the LXR transcriptional target APOE subsequently increased T 
cell activation. Importantly, this observation was further validated in 
cancer patients in a phase I clinical trial. In addition, LXR activation 
can augment other immunotherapies such as overt T-cell transfer 
and checkpoint blockade therapy in mouse models [150]. In addition, 
RGX-104 also partially cleared the immunosuppressive effects of 
radiotherapy in a mouse model of Non-Small Cell Lung Cancer 
(NSCLC) [151].

SREBP
Adiponectin, a specific inhibitor of SREBP activation, is a 

diarylthiazole derivative that binds to SCAP and inhibits the 
translocation of SREBP-1 and SREBP-2 from the ER to the Golgi 
[152]. In prostate cancer, adiponectin inhibits cell proliferation 
and colony formation in androgen-responsive or insensitive cancer 
cells and leads to G2/M cell cycle arrest and cell death, which is 
mediated by blocking SREBP-regulated metabolic pathways and 
AR signaling networks [153]. Furthermore, adiponectin can reverse 
progesterone resistance by inhibiting the SREBP-1/NF-kB pathway 
in endometrial cancer [154]. In addition to inhibiting SREBP activity, 
it also inhibits mitotic microtubule spindle assembly and cell division 
in invasive cancers [155]. Tocotrienol, a minor form of vitamin E, 
degrades mature SREBP-2 without affecting LXR activity to maintain 
cholesterol homeostasis in prostate cancer [156]. Rhodopsin, an 
anthraquinone from many plants, inhibits SREBP-2 transcriptional 
activity, cholesterol metabolism and Akt signaling pathways, and 
sensitizes HCC cells to the anticancer effects of sorafenib in vitro 
and in xenograft models [157]. A newly developed AR antagonist, 
apalutamide, significantly inhibited proliferation and migration, 
induced cysteine protease-dependent apoptosis, and reduced lipid 
droplet levels in PCa cells by modulating the levels of ACL, ACC, 
FASN, and SREBP-1. In addition, proxalutamide reduced AR 
expression in PCa cells, which may overcome resistance to AR-
targeted therapy [158].

HMGCR
Targeting HMGCR, a key enzyme in cholesterol synthesis, is 

considered one of the strategies for the treatment of cancer [159]. 
Originally used for the treatment of cardiovascular diseases, statins 
have become a standard of care for the treatment of cancer patients 
with high cholesterol levels [160]. Statins competitively inhibit HMG-
CoA reductase its controlled conversion of HMG-CoA to mevalonate 
[161]. In TME, statins can reduce tumor cell proliferation, promote 
apoptosis, induce autophagy, reduce migration and invasion, and 
promote anti-inflammatory immunomodulation by affecting key 
proteins such as Ras, RhoA/C, Rac, and Rab [162]. Smooth muscle 
tumor experiments showed that simvastatin treatment not only 
inhibited cell proliferation and promoted apoptosis, but also inhibited 
extracellular matrix protein levels [163]. And synergistic effects have 
been observed when statins are combined with anti-PD1 therapy 
[164].

FPPS
Nitrogen containing Bisphosphonates (N-BPs) as FPPS inhibitors 

are another major class of inhibitors targeting the mevalonate pathway. 
Compared to the original non-nitrogen-containing bisphosphonates, 
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N-BPs have an increased affinity for hydroxyapatite and interfere 
with FPPS in the mevalonate pathway [165]. The third generation 
N-BPs, Zoledronic acid (ZOL) and minodronate (YM529), are more 
potent inhibitors of FPPS than the first generation of bisphosphonates 
and have been found to inhibit cell growth, induce apoptosis, inhibit 
angiogenesis, and reduce tumor cell adherence to bone, among 
other possible mechanisms, in a variety of cancers [166]. Due to its 
strong inhibitory effect on osteoclasts, N-BP is used for the treatment 
of osteolytic bone metastases, and in is also commonly used in the 
advanced treatment of prostate and breast cancer [81].

SQLE
Given the dysregulation of SQLE in cancer and its tumor-

promoting function, targeting SQLE is considered a new and 
promising antitumor therapy. Terbinafine, a pioneer SQLE inhibitor 
used in antitumor therapy (Figure 2), was shown to reduce the 
overall risk of death in a retrospective cohort study of prostate cancer 
patients receiving systemic administration of terbinafine [167], and 
another study showed that terbinafine reduced PSA levels in three-
quarters of patients with advanced prostate cancer [168]. In Non-
Alcoholic Fatty Liver Disease (NAFLD)-induced HCC, terbinafine 
enhances SQLE degradation via autophagy and then reverses PTEN 
expression, which in turn inhibits the AKT/mTOR signaling pathway 
[129]. For other types of SQLE inhibitors, such as natural compounds 
and derivatives, their specific properties may make them potential 
antitumor agents or developed as clinically safe SQLE inhibitors, such 
as (-)-Epigallocatechin 3-O-gallate (EGCG) extracted from green 
tea has been shown to be a potent and safe inhibitor of SQLE, even 
when consumed at high doses, few side effects have been reported 
[169]. The antitumor effect of EGCG has been extensively studied, 
but it is unclear whether the association between SQLE and EGCG 
contributes to this effect [170], which is worthy of further in-depth 
study.

Conclusion
Cholesterol plays a key role in maintaining the structural and 

functional properties of the bilayer, and a large body of evidence 
suggests that elevated cholesterol levels are associated with the 
development of cancer. Cancer cells require a constant supply of 
cholesterol to maintain aberrant proliferation, and much of this 
cholesterol is ensured by de novo synthesis of acetyl coenzyme a in 
the endoplasmic reticulum. Consistent with this view is the idea that 
the immune system and its immune function can be regulated by 
alterations in a variety of mechanisms and can play a wide range of 
roles in the organism.

The reprogramming of cholesterol metabolism in tumors is 
driven by endogenous and exogenous factors. Endogenous factors 
include activation of oncogenes and inactivation of oncogenes, 
while exogenous factors include endoplasmic reticulum stress, 
microenvironmental acidification, and inflammatory factors. 
Numerous clinical and preclinical studies have shown that 
cholesterol metabolism in tumor cells and immune cells can be 
interfered with to achieve the goal of tumor treatment. Cholesterol 
metabolism modulation therapy can also be combined with existing 
clinical therapies to improve the efficacy of tumor treatment. Further 
understanding of the biology of mitochondrial cholesterol regulation, 
sterol regulatory element binding proteins, and the regulation of 
enzymes involved in cholesterol-regulated metabolism in cancer 
cells could be an attractive target for intervening in the biology of 
cancer cells and provide an opportunity for the design of new cancer 

therapeutic approaches.

Despite the exciting advances in the field, many fundamental 
questions remain to be addressed, such as: Is it possible to modulate 
specific cholesterol pathways to achieve both anti-tumor and immune-
promoting effects? What are the most effective combinatorial 
strategies for attacking cancer cells with different approaches? Can 
some of the drugs currently used to treat metabolic diseases be 
repositioned as antitumor agents? These salient questions reflect the 
urgent need for more mechanistic studies of cholesterol metabolism 
in cancer, which may pave the way for the next generation of clinical 
therapies.
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